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Abstract

The numerical dispersion relation is an important measure of the dis-

cretization error inherent in grid-based numerical methods for solving

Maxwell's equations. In this paper we calculate the numerical disper-

sion of a vector �nite element method for the case of a distorted three-

dimensional hexahedral grid. The main result is that the numerical dis-

persion relation remains second-order accurate as the grid is distorted,

although the dispersion becomes quite anisotropic.

1 Introduction

The classic nodal �nite element method has been shown to be an accurate

and robust method for solving electrostatic problems on three-dimensional

unstructured grids. However the use of nodal �nite elements for fully elec-

tromagnetic problems has been problematic for several reasons. First, the

standard Lagrange nodal �nite element does not allow jump discontinu-

ities of �elds across material interfaces. Second, the use of nodal �nite

elements can lead to spurious, non-physical solutions. For these reasons,

vector �nite element methods which employ the recently developed class

of elements known as edge, Nedelec, or H(curl) elements [1, 2, 3, 4, 5]

have become quite popular. This paper is concerned with the numerical

dispersion of a vector �nite element method employing linear hexahedral

edge elements. The analysis is applicable to either frequency domain or

time domain formulations.

The numerical dispersion relation is useful for determining if a method

is consistent, and it gives the order (rate of convergence) of the method.

Engineers can use the numerical dispersion relation to determine the grid

resolution required to achieve a certain accuracy. It is well known that the

classic FDTD method has a second-order accurate numerical dispersion
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relation [6]. The numerical dispersion relation has been derived for vector

�nite element methods on two-dimensional square [7] and triangular [8, 9,

10] grids. In this paper a procedure for obtaining the numerical dispersion

relation for three-dimensional distorted hexahedral grids is described. The

main result is that the numerical dispersion relation remains second-order

accurate for distorted grids, although the numerical dispersion can become

quite anisotropic.

2 Galerkin Formulation

We are concerned with the computer simulation of time dependent elec-

tromagnetic �elds in a generic volume 
. There is no free charge in the

volume. An appropriate PDE is the vector wave equation for the electric

�eld ~E

�
@2

@t2
~E = �r� �

�1r� ~E �
@

@t
~J in 
: (1)

For simplicity it is assumed that the dielectric permittivity � and the

magnetic permeability � are constant scalars. The electric �eld on the

boundary � is speci�ed by

n̂� ~E = ~Ebc on �; (2)

and the two initial conditions

~E(t = 0) = ~Eic in 
; (3)

@

@t
~E(t = 0) =

@

@t
~Eic in 
; (4)

complete the description of the PDE. Typically the initial conditions are

zero and the problem is driven by either the time dependent current source
~J or the time dependent boundary condition ~Ebc.

The variational form of (1) is: �nd ~E 2 H(curl) that satis�es

@2

@t2

�
� ~E; ~E

?
�
=
�
�
�1r� ~E;r� ~E

?
�
�

@

@t

�
~J; ~E

?
�

(5)

for all ~E? 2 H0(curl), where

(~u;~v) =

Z



~v � ~ud
; (6)

and

H0(curl) = f~v : ~v 2 H(curl); n̂� ~v = 0g : (7)

In the �nite element solution of (5) the space H(curl) is approximated by

a �nite dimension subspace W h � H(curl) de�ned on a mesh, yielding a

system of ODE's

A
@2

@t2
~e = C~e+ ~s: (8)

The variable ~e is the array of degrees of freedom (DOF) and the variable

~s is the array of source terms, which includes contributions from both

the independent current source ~J and the boundary condition ~Ebc. The
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matrixA is a symmetric positive de�nite matrix, with units of capacitance,

which resembles the mass matrix of continuum mechanics. The matrices

A and C are given by

Aij =
�
� ~Wi; ~Wj

�
; (9)

Cij =
�
�
�1r� ~Wi;r� ~Wj

�
; (10)

where ~Wi is the basis function associated with edge i. The system of

ODE's (8) is integrated using the leapfrog method, which requires the

linear system to be solved at every time step. An eÆcient method for

solving this system is described in [11], and the stability of the method is

discussed in [12].

For every hexahedral cell there are 12 edge basis functions. It is con-

venient to de�ne the basis functions on a unit cube and then transform

the functions appropriately. First, de�ne the polynomial space Ql;m;n in

three variables x, y, and z the maximum degree of which are respectively,

l in x, m in y, and n in z. The polynomial space P used for the linear

edge element is

P = f~u : ux 2 Q0;1;1;uy 2 Q1;0;1;uz 2 Q1;1;0g : (11)

The basis functions ~Wi are then de�ned by the equationZ
~Wi � ~tjds = Æij ; (12)

where ~tj is the unit tangent along edge j. If the cubical cell is distorted

according to the isoparametric transformation

~x = B~x+~b; (13)

the vector basis functions must be transformed covariantly,

~W = B
�1 ~W: (14)

3 Numerical Dispersion

In an in�nite, homogeneous, source-free region the solution of (1) is a

plane wave of the form

~E = ~E0e
I(~k�~x�!t); (15)

where ! is the radian frequency, ~k is the wave vector, and ~E0 is a constant

vector perpendicular to ~k that determines the polarization of the wave.

The above equation is the Fourier representation of a plane wave with

I = sqrt�1. The plane wave is a solution to (1) only if the dispersion

relation

!
2
= c

2
k
2
; (16)

is satis�ed, where c = 1=
p
�� is the speed of light and k is the wave

number. The phase velocity is given by

� =
!

k
(17)
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Figure 1: De�nition of edge numbering scheme

which is equal to the speed of light c.

The vector �nite element method, like other grid-based schemes for

solving Maxwell's equations, exhibits numerical dispersion and numerical

anisotropy due to the �nite grid and the �nite time sampling. A numerical

wave propagating on a grid will not satisfy (16) in general. The numerical

dispersion relation is derived by assuming a discrete plane wave solution,

and solving for ! in terms of k.

For this analysis a cubical cell is distorted such that edges e1-e4 are

parallel, edges e5-e8 are parallel, and edges e9-e12 are parallel. This is

illustrated in Fig. 1. Since the solution is a plane wave of arbitrary

polarization, ~E0 has three components, denoted by X, Y , and Z. The

electric �eld DOF on edges e1-e4 are related by

e1 = X

e2 = Xe
I(~k��2�!�t)

e3 = XeI(
~k��3�!�t)

e4 = Xe
I(~k��4�!�t) (18)

where �i is the distance from edge e1 to edge ei. Likewise, for edges e5-e8
we have

e5 = Y

e6 = Y e
I(~k��6�!�t)

e7 = Y e
I(~k��7�!�t)

e8 = Y e
I(~k��8�!�t) (19)
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where �i is the distance from edge e5 to edge ei. Finally, the electric �eld

DOF on edges e9-e12 are related by

e9 = Z

e10 = Ze
I(~k��10�!�t)

e11 = Ze
I(~k��11�!�t)

e12 = Ze
I(~k��12�!�t) (20)

where �i is the distance from edge e9 to edge ei.

For time domain simulation the time derivative will be approximated

by the second-order central di�erence formula�
@2e

@t2

�n

�
en+1 � 2en + en�1

�t2
; (21)

where n denotes the the discrete time index. Since we are assuming a

time harmonic �eld, the time derivative can be expressed as

	e

�t2
; (22)

where

	 = 2 (cos (!�t� 1)) : (23)

Combining (8)- (10) and (18)-(20) yields a homogeneous system of equa-

tions

(	F + �G)

�����
X

Y

Z

����� = 0 (24)

for X, Y , and Z. In (24) � = c2 �t2

�h2
is a given constant, where the �h2

term is pulled out of the integrals in (9) and (10). The 3 by 3 matrices F

and G are functions of the phase factors eI(
~k���!�t) and the matrices A

and C, respectively. The matrices F and G are complicated and will not

be shown here. The reader is referred to [12] for a complete description

of these matrices.

The numerical dispersion relation is given by

det (	F + �G) = 0: (25)

This is a complicated non-linear relationship between ~k and !. There are

three roots: one is zero which does not represent anything physical; the

other two are equal and correspond to the two distinct polarizations. For

a given grid, the roots of (25) can be computed using a symbolic math

package such as Mathematica. Given these roots, it is possible to pick a

value of ~k and solve for !. The numerical phase velocity is then given by

(17).

Consider a unit cube with a skew distortion by an amount � in the x

direction and by the same amount � in the z direction as shown in Fig.

1. Let
~k = k (x̂ cos(�) sin(�) + ŷ sin(�) sin(�) + ẑ cos(�)) (26)
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be the wave vector with spherical angles � and �. The numerical phase

velocity is then a function of �, �, �, and k. In the computational ex-

periments below c = 1, �h = 1, and �t = 1=3. Figures 2 through 5

show surfaces of phase velocity error for sheer angles of � = 0Æ, � = 15Æ,

� = 30Æ, and � = 45Æ, respectively. Each �gure shows the velocity error

for k = 2�=5, with the velocity error de�ned as � � c. The �gures clearly

show that the numerical phase velocity becomes quite anisotropic for large

skew angles.

Figure 2: Phase velocity error for � = 0Æ. The length of the axis is 0.15 m/s

Figure 3: Phase velocity error for � = 15Æ. The length of the axis is 0.25 m/s

The velocity error in Figures 2 through 5 is fairly large due to the �=5

grid spacing. The minimum velocity, maximum velocity, and anisotropy

ration are tabulated below as a function of k for each of the four grid

distortions. The error is reduced signi�cantly as k decreases, as expected.

It is possible to determine the rate of convergence of the numerical disper-

sion relation by applying a least-square �t to the data in Tables 1 through
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Figure 4: Phase velocity error for � = 30Æ. The length of the axis is 0.35 m/s

Figure 5: Phase velocity error for � = 45Æ. The length of the axis is 0.35 m/s

4. The logarithm of the error versus the logarithm of k is shown in Fig 6

for each of the four grids, along with a least-square �t. The least-square

�t is applied to the maximum velocity error. For each grid the slope of the

linear �t is approximately 2 (from 2.02 to 2.09), indicating second-order

convergence.

By performing a Taylor series expansion of the roots of (25), with

respect to !�t and k�h, it can be shown that the numerical dispersion

relation has the form

!2

k2
= c

2
1 +O

�
(k�h)2

�
1 � 1=12 (!�t)2 +O

�
(!�t)4

� : (27)

The denominator represents the isotropic part of the dispersion, and the

numerator represents the anisotropic part. The numerical dispersion for

a frequency domain method is obtained by simply setting �t = 0. Thus

the shape of the numerical dispersion surfaces shown in Figures 2 through
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Table 1: Phase velocity and anisotropy ratio for � = 0 grid

k max � min � ratio

2 � / 5 1.07538 1.03002 1.04404

2 � / 10 1.01845 1.00736 1.01101

2 � / 15 1.00816 1.00326 1.00488

2 � / 20 1.00458 1.00183 1.00274

5, and the anisotropy ratio tabulated in Tables 1 through 4, is the same

for time or frequency domain implementations.

Table 2: Phase velocity and anisotropy ratio for � = 15 grid

k max � min � ratio

2 � / 5 1.08797 1.01709 1.06969

2 � / 10 1.02113 1.00423 1.01682

2 � / 15 1.00931 1.00188 1.00742

2 � / 20 1.00522 1.00106 1.00416

Table 3: Phase velocity and anisotropy ratio for � = 30 grid

k max � min � ratio

2 � / 5 1.14536 1.00913 1.135

2 � / 10 1.03401 1.00227 1.0316

2 � / 15 1.01493 1.00101 1.0139

2 � / 20 1.00836 1.00057 1.00779

Table 4: Phase velocity and anisotropy ratio for � = 45 grid

k max � min � ratio

2 � / 5 1.35058 1.00333 1.34609

2 � / 10 1.08656 1.00083 1.08566

2 � / 15 1.03845 1.00037 1.03807

2 � / 20 1.02163 1.00021 1.02142

4 Conclusion

A procedure for determining the numerical dispersion of a vector �nite

element method on three-dimensional distorted hexahedral grids was pre-

sented. For the class of grid distortions analyzed, the numerical dispersion

relation remains second-order accurate as the grid is distorted. However,
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Figure 6: Least-square �t of velocity error indicating second-order convergence.

The larger error corresponds to larger grid sheer angle.

the numerical dispersion relation becomes quite anisotropic as the grid is

distorted. For example, the maximum phase error for a 30Æ skew distor-

tion grid is twice that of a uniform Cartesion grid.
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